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Abstract
An asymptotic theory is developed for general non-integrable boundary
quantum field theory in 1 + 1 dimensions based on the Lagrangian description.
Reflection matrices are defined to connect asymptotic states and are shown to
be related to the Green functions via the boundary reduction formula derived.
The definition of the R-matrix for integrable theories due to Ghoshal and
Zamolodchikov and that used in the perturbative approaches are shown to be
related.

PACS numbers: 11.10.Jj, 03.70.+k, 11.55.−m

1. Introduction

Two-dimensional boundary quantum field theories have been analysed from two different
points of view, the bootstrap and the perturbative, respectively.

The former was initiated by Ghoshal and Zamolodchikov in [1] and can be applied to
integrable theories. In such theories there is an infinite number of conserved quantities, which
give severe restrictions on the allowed physical processes. Besides the usual constraints
such as factorization and purely elastic bulk scattering there is also factorization and purely
elastic reflection on the boundary. The scattering theory developed in [1] is analogous to the
axiomatic scattering theory [15]: in the in state the particles travel towards the boundary with
decreasingly ordered momenta, while in the out state, where all the scatterings and reflections
have been terminated, they travel away from the boundary with decreasingly ordered momenta
again. The R-matrix which connects the in and out states is the composition of the individual
reflection and the pairwise scattering matrices. The one-particle reflection matrices have to
obey unitarity, boundary Yang–Baxter and boundary crossing relations. Using these relations
together with the bootstrap condition [1, 2] the model can be solved modulo CDD type
ambiguities. We emphasize that in the bulk case the axioms of the scattering theory such as
unitarity, crossing symmetry [15] were motivated by relativistic field theoretic results based
on the perturbative, Lagrangian description. In the boundary case, however, to our knowledge,
no such background is available. In [3] the nonlinear Schrödinger model with linear boundary
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condition on the half line is considered and the assumptions of the axiomatic scattering theory
are rigorously checked. This model is, however, non-relativistic and integrable.

The perturbative approach to boundary quantum field theories can be applied without the
assumption of integrability. It was started with the analysis of bulk perturbation [4, 5] with
the Neumann boundary condition, then extended to boundary perturbations in [6–12]. Most
of these papers deal with comparing exact results, obtained in the aforementioned way for the
reflection matrices in integrable theories, on one hand, and perturbative results on the other.
They defined the reflection matrix R(k) through the asymptotic behaviour of the two-point
function of the field �—creating the particles—far away from the boundary:

〈0|T (�(x, t)�(x ′, t ′))|0〉 =
∫

dω

2π

e−iω(t−t ′)

2k(ω)
(eik(ω)|x−x′ | + R(k) e−ik(ω)(x+x′)) + · · · . (1)

No detailed justification has been given for this quantity being the same as the axiomatic
R-matrix.

In this paper, we develop the asymptotic theory for a scalar field with the most general bulk
and boundary self-interaction. We derive the boundary reduction formula, which connects the
reflection matrix to the two-point function. As a consequence we can fill the gap mentioned
above, that is we are able to connect the R-matrix of the axiomatic theory to (1).

The paper is organized as follows: we apply the canonical quantization procedure to
the free theory, in which case the boundary condition is Neumann. The interacting theory is
defined by means of the adiabatic hypothesis. Asymptotic states and reflection matrices are
introduced and the simplest physical process of one incoming particle is demonstrated. As
the main result we derive the boundary reduction formula. Having developed the boundary
perturbation theory we are able to connect the earlier definitions of the R-matrix, and finally
we conclude on their equivalence. A brief explanation of the Feynman rules is given in
appendix A, while the structure of the two-point function is analysed in appendix B.

2. The free theory

The system we are dealing with contains a real scalar field �(x, t), living on the half space
x � 0. The bulk and boundary interactions are described by the action

S =
∫ ∞

−∞
dt

∫ 0

−∞
dx

[
1

2
((∂t�)2 − (∂x�)2 − m2�2) − V (�)

]
−
∫ ∞

−∞
dt U(�(0, t)). (2)

The free theory can be obtained by switching off the bulk and the boundary interactions:
V (�) = U(�) = 0. The equation of motion is the usual bulk free equation, the boundary
condition is, however, the Neumann one

(� + m2)�(x, t) = 0 ∂x�(x, t)|x=0 = 0.

In solving these equations by Fourier transformation we have to use the complete system of
functions with this boundary condition

�(x, t) =
∫ ∞

−∞

dk

2π
cos(kx)�̃(k, t) �̃(k, t) = �̃(−k, t).

The conjugate momentum also satisfies Neumann boundary condition so the canonical
commutation relation reads

[�(x, t),�(x ′, t)] = iδN(x, x ′) ≡ iδ(x − x ′) + iδ(x + x ′).

The creation and annihilation operators which diagonalize the Hamiltonian are

a(k, t) = i�̃(k, t) + ω(k)�̃(k, t) a+(k, t) = −i�̃(k, t) + ω(k)�̃(k, t)
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where ω(k) =
√

k2 + m2. Their commutation relations are

[a(k, t), a+(k′, t)] = 2π2ω(k)(δ(k − k′) + δ(k + k′)).

Normal ordering is defined as usual: creation operators a+(k, t) are to the left of annihilation
operators a(k′, t). Since the normal ordered Hamiltonian is

H = 1

2

∫ ∞

−∞
dk̃ ω(k)a+(k, t)a(k, t) dk̃ = dk

2π2ω(k)

the time dependence can be determined exactly: a+(k, t) = a+(k) eiω(k)t and a(k, t) =
a(k) e−iω(k)t . Putting it back into the expansion of � gives rise to

�(x, t) =
∫ ∞

−∞
dk̃ cos(kx)(a+(k) eiω(k)t + a(k) e−iω(k)t ). (3)

The Fock Hilbert space H can be built up by the action of the creation operators on the vacuum:

a(k)|0〉 = 0 ∀k

|k1, k2, . . . , kn〉 = a+(k1)a
+(k2) · · · a+(kn)|0〉 k1 � k2 � · · · � kn � 0.

Note that in labelling the states, k is always positive3. For technical reasons in some formulae
we also allow k to take negative values, but we always mean a symmetric extension, that is
a(k) = a(−k). The vacuum expectation value of the time-ordered product

〈0|T (�(x, t)�(x ′, t ′))|0〉 =
∫ ∞

−∞

d2k

(2π)2

i e−ik0(t−t ′)

k2 − m2 + iε
(eik1(x−x′) + eik1(x+x′)) (4)

solves the inhomogeneous equation

(� + m2)〈0|T (�(x, t)�(x ′, t ′))|0〉 = −iδN(x, x ′)δ(t − t ′).

Besides the usual bulk propagator, which describes how the field propagates from (x, t) to
(x ′, t ′), (4) also contains another contribution, which can be interpreted as a bulk propagation
of the field from (−x, t) to (x ′, t ′). Thus the free boundary theory (Neumann boundary
condition) can be realized by the mirror trick: we compute every quantity in the usual bulk
theory, but any time we insert a field at (x, t) we insert the same type of field also at the mirror
point (−x, t). Since the interacting theory is defined in terms of the free quantities, (in the
calculations we use the free propagator) we have the following interpretational consequence:
the particles interact not only with themselves but also with their mirror partners.

3. Interacting theory, asymptotic states

Non-trivial interaction is described by (2) when U(�), V (�) or both are nonzero. To handle
this case we use the adiabatic hypothesis. That is the interaction is switched on adiabatically
in the remote past and switched off in the remote future. Moreover, we also suppose that
the particle spectrum does not change during this adiabatic procedure: only the masses are
renormalized. In a real scattering experiment the prepared state is one of the free theory (in
state) and the detected state is also a free state (out state). Both the in and the out states provide
a basis for the Hilbert space H, and the R-matrix is a unitary transformation connecting the
two:

|final〉out = R|initial〉in.

The unitarity of the R-matrix expresses the fact that the transition probabilities sum up to one.
3 Actually k provides only a different parametrization of the energy by the relation k = √

ω2 − m2, since in the
presence of a boundary the momentum is not conserved.
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The simplest process we can imagine is that in which a single particle travels toward the
boundary, reflects on it and then returns as a multi-particle configuration. The naive bulk
analogue of this process is trivial since asymptotic particles are stable by assumption. In the
presence of the boundary we can interpret this process in terms of the mirror transformation.
In this language the in state contains not only the incoming particle but also its mirror image
with respect to the boundary x = 0. The scattering of the incoming particle on the boundary
has a contribution describing its scattering on its mirror image, a process analogous to the
two-particle scattering in the bulk. To be concrete: in the initial state of this process we have
a wave packet of the form

|initial〉in =
∫ ∞

−∞
dk̃

′
f (k′)|k′〉in (5)

where we suppose that f (k′) is well localized around k. The spacetime dependence of such a
configuration is

f̃ (x, t) =
∫ ∞

−∞
d̃k′f (k′) cos(k′x) e−iω(k′)t .

It describes a wave packet travelling with momentum k towards the boundary. It also contains,
however, the mirror image of the packet which is on the other side of the wall (so is not in the
real spacetime) and travels with momentum −k as shown in the following figure:

k −k

Figure 1. Initial state.

If there is no interaction (free case) then this state (5) is the eigenstate of the free
Hamiltonian. Since the time evolution is trivial the picture in the remote future looks like

k−k

Figure 2. Final state.

Now the real and reflected particle travels away from the boundary with momentum |− k|
and the mirror image with momentum k.

In the interacting case the final state may contain particles (or just one particle in the
integrable case) travelling backward from the boundary. This coincides with the idea of [1]
where the in state contains a particle with rapidity θ while the out state has rapidity −θ .

4. Boundary reduction formula

We are interested in the case when both the in and the out states contain a single particle with
definite energy. The energy conservation can be factored out:

out〈k′|k〉in = 2π(δ(k − k′) + δ(k + k′))ω(k)R(|k|).
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Our aim is to make correspondence with the other definitions of the reflection matrix. For this
reason we express the reflection matrix R in terms of the correlation functions. In the bulk
theory this is done using the reduction formula [14]. In the following, we derive an analogous
formula for boundary theories. The steps of the derivation are similar to those in [14].

The in field is a free field so we can use the decomposition (3). The inverse of this
relation is

ain(k) = 2i
∫ 0

−∞
dx cos(kx) eiω(k)t

↔
∂ t �in(x, t)

(6)

a+
in(k) = −2i

∫ 0

−∞
dx cos(kx) e−iω(k)t

↔
∂ t �in(x, t).

Using the definition of the in state we have

out〈p1, . . . , pk|q1, . . . , ql〉in =: 〈 〉 = out〈p1, . . . , pk|a+
in(q1)|q2, . . . , ql〉in. (7)

Now apply formulae (6) to obtain

〈 〉 = −2i
∫ 0

−∞
dx cos(q1x) e−iω(q1)t

↔
∂ t out〈p1, . . . , pk|�in(x, t)|q2, . . . , ql〉in.

We suppose that the in field can be expressed in terms of the interacting field as �(x, t) →
Z1/2�in(x, t) as t → −∞. As a consequence

〈 〉 = −i lim
t→−∞ Z−1/22

∫ 0

−∞
dx cos(q1x) e−iω(q1)t

↔
∂ t out〈p1, . . . , pk|�(x, t)|q2, . . . , ql〉in.

Since lim
t→∞ �(x, t) = lim

t→∞ Z1/2�out(x, t) we also have

〈 〉 = out〈p1, . . . , pk|a+
out(q1)|q2, . . . , ql〉in + iZ−1/22

∫ 0

−∞
dx

∫ ∞

−∞
dt ∂t {cos(q1x)

× e−iω(q1)t
↔
∂ t out〈p1, . . . , pk|�(x, t)|q2, . . . , ql〉in}

from which the connected part is

iZ−1/22
∫ 0

−∞
dx

∫ ∞

−∞
dt e−iω(q1)t

{
cos(q1x)〈out|∂2

t �(x, t)|in〉

+ 〈out|�(x, t)|in〉 (−∂2
x + m2) cos(q1x)

}
where 〈out| (|in〉) is the shorthand form for 〈p1, . . . , pk| (|q2, . . . , ql〉), respectively.
Performing the partial integration, (which is legitimate if momenta are smeared with wave
packets of the form of (5)), we have to be careful to keep the surface term. The connected part
turns out to be

iZ−1/22
∫

d2x e−iω(q1)t cos(q1x){� + m2 + δ(x)∂x}〈out|�(x, t)|in〉

where
∫

d2x = ∫ 0
−∞ dx

∫∞
−∞ dt is the integral over the entire physical spacetime. This is the

first stage of the reduction formula. In the second step we eliminate an outgoing particle.
The derivation straightforwardly follows the combination of the previous computation and the
usual bulk derivation. The connected part of the result is

out〈p1, . . . , pk|q1, . . . , ql〉in = −4Z−1
∫

d2x d2x ′ ei(ω(p1)t
′−ω(q1)t) cos(q1x) cos(p1x

′)

{� + m2 + δ(x)∂x}{�′ + m2 + δ(x ′)∂x′ }〈p2, . . . , pn|T (�(x, t)�(x ′, t ′))|in〉.
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Iterating the above steps the general matrix element (7) can be expressed in terms of the
(k + l)-point function.

In particular, for the reflection matrix we have

out〈k′|k〉in − out〈k′|k〉out = 2π(δ(k − k′) + δ(k + k′))ω(k)(R(|k|) − 1)

= −4Z−1
∫

d2x d2x ′ ei(ω(p1)t
′−ω(q1)t) cos(q1x) cos(p1x

′)

× {� + m2 + δ(x)∂x}{�′ + m2 + δ(x ′)∂x′ }G(x, x ′, t − t ′) (8)

where

G(x, x ′, t − t ′) = 〈0|T (�(x, t)�(x ′, t ′))|0〉. (9)

5. Perturbation theory

Let us turn to the description of the interacting theory as a perturbation of the free one. In
doing so we use the interaction representation. That is the time evolution operator is given by
the time-ordered (T ) product as

U(t) = T exp

{
−i
∫ t

−∞
dt ′ Hint(t

′)
}

.

This Hamiltonian contains the in fields and acts on the in Hilbert space by construction.
Clearly the R-matrix can be expressed as

R = U(∞) = T exp

{
−i
∫ ∞

−∞
dt ′ Hint(t

′)
}

which also gives a direct calculation of this quantity. The interacting field is built up from the
free field as

�(x, t) = U−1(t)�in(x, t)U(t).

Putting this expression into the two-point function (9) and using the usual heuristic derivation
we obtain

〈0|T (�(x, t)�(x ′, t ′))|0〉 = 〈0|T (�in(x, t)�in(x
′, t ′) exp{i ∫ d2x Lint[�in(x, t)]})|0〉

〈0|T (exp{i ∫ d2x Lint[�in(x, t)]})|0〉 .

Expanding the exponential we arrive at the perturbative series

=
∑∞

n=0
in

n! 〈0|T (�in(x, t)�in(x
′, t ′)

∫
d2x1 Lint[�in(x1, t1)] · · · ∫ d2xn Lint[�in(xn, tn)])|0〉∑∞

n=0
in
n! 〈0|T (

∫
d2x1 Lint[�in(x1, t1)] · · · ∫ d2xn Lint[�in(xn, tn)])|0〉 .

(10)

In computing the vacuum expectation values of the product of the fields we can use Wick’s
theorem. The results are encoded in the Feynman rules which are given in appendix A.

From careful analysis of the perturbative series (see appendix B) one can deduce that the
momentum space Green function has the following form:

G(p, p′, ω) = 2π(δ(p + p′) + δ(p − p′))Gbulk(p, ω) + Gbulk(p, ω)B(p, p′, ω)Gbulk(p
′, ω).

(11)

Here Gbulk(p, ω) is the propagator of the bulk theory, which in terms of the spectral function
σ(m2) has the usual Källen–Lehmann representation [14]

Gbulk(p, ω) = iZ

ω2 − p2 − m2 + iε
+
∫ ∞

4m2

dm′2 iσ(m′2)
ω2 − p2 − m′2 + iε

. (12)
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We also have the decomposition

B(p, p′, ω) = B1(p, p′, ω) + B2(p, ω) + B2(p
′, ω) + B3(ω). (13)

The interpretation of the terms in (11) is the following: the first term describes the propagation
in the presence of the boundary without hitting the boundary. In the second term Gbulk(p, ω) is
the propagator to the boundary,B(p, p′, ω) is the reflection on the boundary,while Gbulk(p

′, ω)

describes the propagation back from the boundary. In the reflection matrix B1(p, p′, ω) really
depends on both momenta and comes from the purely bulk interactions, B3(ω) is the purely
boundary contribution and B2 represents the cross terms.

Now we are able to relate the two different definitions of the R-matrix. Performing both
inverse Fourier transformations of (11) in the momentum variables, but keeping only the
contributions of the poles of the first term in propagators (12)

G(x, x ′, t − t ′) =
∫

dω

2π

Z e−iω(t−t ′)

2k(ω)

(
eik(ω)|x−x′ | +

(
1 +

ZB(k(ω), k(ω), ω)

2k(ω)

)
e−ik(ω)(x+x′)

)

where k(ω) = √
ω2 − m2. Comparing the reflected wave with the unreflected one the

reflection matrix was defined to be

R(k) = 1 +
ZB(k(ω), k(ω), ω)

2k(ω)
.

We will recover the same result from our boundary reduction formula (8). First we recall
that the reduction formula describes the way the matrix elements are related to the correlation
functions. Considering the correlation functions in momentum space the operator � + m2

gives a factor of −k2 +m2 for each external leg. The spacetime integrations, as inverse Fourier
transformations, put all the momenta on shell. Since all of the outer legs in the correlation
functions are dressed up in the perturbation theory to contain the exact bulk propagators (12)
with poles of the form iZ

k2−m2 , the reduction formula merely amputates the legs and gives
the residue of this multi-pole. In the boundary case we have an analogous interpretation.
Similar to the bulk case the momentum conserving part of (11) does not give any contribution
to the R-matrix so it is enough to consider the other term. A careful analysis shows that
(� + m2) is the operator which amputates the legs starting with a bulk vertex, while δ(x)∂x is
responsible for amputation of the legs starting with a boundary vertex. As a consequence the
(�+m2)(�′ +m2) term gives B1(k, k′, ω(k)), the terms (�+m2)δ(x ′)∂x′ and (�′ +m2)δ(x)∂x

together give B2(k, ω(k))+B2(k
′, ω(k)), finally δ(x)∂xδ(x

′)∂x′ gives B3(ω(k)). We also have
an overall factor 2πZδ(ω(k) − ω(k′)) expressing energy conservation. Collecting all these
terms and using the identity 2πδ(ω(k) − ω(k′)) = ω(k)

k
2π(δ(k − k′) + δ(k + k′)), we obtain

that

R(k) = 1 +
ZB(k, k, ω(k))

2k

which shows that the reflection factor defined by using asymptotic states and that defined using
the two-point function are identical.

6. Conclusion

The boundary reduction formula, derived in the paper for a boson with the most general
(possibly non-integrable) boundary and bulk self-interaction, showed the equivalence of the
previously used definitions for the R-matrix, and supports the correctness of the formalism.
This formulation enables one to derive the main properties of the R-matrix such as analyticity,
unitarity, crossing symmetry and analyse its pole structure directly without referring to
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the crossed channel picture used in [1]. The analysis of the perturbative series, Landau
equations, Cutkosky rules, the derivation of the boundary Coleman–Thun mechanism and of
the analyticity properties of the R-matrix are the subjects of our next paper.
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Appendix A

The Feynman rules of the boundary theory can be obtained by expanding the interaction
Lagrangian as

Lint(x, t) =
∞∑

N=0

αN

N!
�(x, t)N + δ(x)

∞∑
M=0

βM

M!
�(0, t)M (14)

and putting (14) into (10). In contrast to the perturbative approaches developed so far we
formulate the resulting Feynman rules in momentum space. That is we compute

G̃(p1, ω1, . . . , pn, ωn) =
∫ ∞

−∞
dx1 · · ·

∫ ∞

−∞
dxn

×
∫ ∞

−∞
dt1 · · ·

∫ ∞

−∞
dtn ei

∑n
j=1(pj xj −ωj tj )G(x1, t1, . . . , xn, tn)

according to the Feynman rules:

• Draw all possible oriented graphs with n external legs such that the external legs point
inside the graph. The lines (both external and internal) can be of two types: straight and
dashed. The vertices can be of two types: black and white. Label the external legs by
the 2-momenta (p1, ω1) . . . (pn, ωn), and the internal lines by new momentum variables
(k1, k0).

• To a black vertex with N incident lines attach the contribution

iαN 2πδ

(∑
i∈in

k0
i −

∑
i∈out

k0
i

)
πδ

(
str∑

i∈in

k1
i −

dsh∑
i∈in

k1
i −

∑
i∈out

k1
i

)
. (15)

...

...

...

1 N

• To a white vertex with M incident lines attach the contribution

iβM2πδ

(∑
i∈in

k0
i −

∑
i∈out

k0
i

)
. (16)

...

...

...

1 M
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• To a line of any type labelled by (k1, k0) attach the contribution
i

k2 − m2 + iε
. (17)

If the line is internal then integrate over k:
∫

d2k
(2π)2 .

• Sum over all topologically distinct diagrams.

The notation i ∈ in/out means that the line labelled by
(
k1

i , k
0
i

)
is incoming/outgoing at

the given vertex. The label str/dsh on the sum means that the summation goes only over
straight/dashed lines.

These Feynman rules need some explanation. The derivation is fairly standard: one
derives the graph rules first in coordinate space. This is done by writing G(x1, t1 . . . xn, tn)

as a perturbative series. Each term of the series is represented by a graph associating the
various parts of the contribution with the vertices and lines of the graph. In particular, there
is a spacetime integration associated with each vertex. According to the two terms in (14),
there are two kinds of vertices: black (bulk) ones corresponding to the first term and white
(boundary) ones corresponding to the second term. Owing to the presence of the factor δ(x)

in the second term of (14) at the boundary vertices the space integration can be performed.
There is only a single type of graph line at this stage.

Converting to momentum space (Fourier transformation of G(x1, t1 . . . xn, tn)), all the
remaining spacetime integrations can be performed resulting in δ functions at each vertex on
the momenta of the lines incident on the vertex. At the boundary vertex there is only a time
integration left, hence we obtain a δ function involving only the time-like component of the
momenta. At the bulk vertex there are both time and space integrations resulting in two δ

functions. The presence of both (xi −xj )- and (xi +xj)-dependent terms in the free propagator
(4) implies that we have a sum of δ functions on the space-like component of the momenta.
The δ in this sum differ in the signs of some momenta in the argument. The two types of lines
are introduced in order to associate different graphs with the individual terms: a line is straight
if it corresponds to the term coming from the (xi − xj )-dependent part of the free propagator
associated with the given line, and dashed if it comes from the (xi + xj )-dependent part.

Appendix B

In this section we analyse the properties of the two-point function in momentum space. A
systematic investigation of the correlation functions can be achieved by generalizing the
parametric representation ([14], section 6.2.3) to the boundary case. Since the introduction
of all the machinery is quite lengthy and we need the result only for the two-point function,
instead of the detailed presentation we summarize how formula (11) can be obtained by the
direct analysis of the perturbative series.

Energy is conserved at each vertex so we have

G̃(p1, ω1, p2, ω2) = 2πδ(ω1 − ω2)G(p1, p2, ω1).

Momentum is not conserved in general. There are graphs whose contribution spoils momentum
conservation: such is any graph containing a boundary vertex. On the other hand, a graph with
only bulk vertices and straight lines gives rise to a contribution proportional to δ(p1 − p2).
Furthermore, the contribution is proportional to the contribution of the same graph computed
in the bulk theory. This can be verified by comparing the appropriate graph rules with the
bulk theory rules, and one finds that the only difference is a factor 1/2 in the bulk vertex
contribution. That is the contribution of a graph with Nb bulk vertices, no boundary vertices
and only straight lines is 2−Nb times the contribution of the same graph in the bulk theory.
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On the other hand, there is a symmetry operation on the graphs that leaves the contribution
invariant. Namely, at each bulk vertex we can change the types of all incident lines and also
the signs of the momenta labelling the outgoing lines. One checks that this transformation—
performed independently at each of the Nb bulk vertices—does not affect the graph contribution
and gives rise to a symmetry factor 2Nb . This symmetry factor just compensates the factor
2−Nb . Hence the sum of the contributions of the graphs with only bulk vertices and straight
lines plus those related to them by the symmetry transformation described gives the propagator
of the bulk theory. It is not difficult to see that no other graph gives a contribution respecting
momentum conservation.

Summing then the contributions of the graphs with only bulk vertices and straight internal
lines (and arbitrary external ones) plus the graphs related to them by symmetry transformation
we obtain the ‘momentum-preserving’ part of the propagator

2π(δ(p1 + p2) + δ(p1 − p2))Gbulk(p1, ω1).

Now we concentrate on the momentum non-preserving part. A diagram which remains
connected when any of its internal line is cut is called one-particle irreducible. Any diagram
with two external legs can be built by attaching one-particle irreducible diagrams after
each other. For the momentum non-preserving diagrams we can separate the consecutive
momentum preserving one-particle irreducible subdiagrams adjacent to a given external line.
This gives subgraphs that are identical to the graphs in the series of the bulk propagator,
so they give factors Gbulk(p1, ω1) and Gbulk(p2, ω2) at the external lines, respectively.
The contributions of the remaining momentum non-preserving subgraphs are collected in
B(p1, p2, ω1). As a consequence, we have the following form for the propagator:

G(p1, p2, ω1) = 2π(δ(p1 + p2) + δ(p1 − p2))Gbulk(p1, ω1)

+ Gbulk(p1, ω1)B(p1, p2, ω1)Gbulk(p2, ω1).

If in a Feynman graph, contributing to B(p1, p2, ω1), both external lines are incident on a
boundary vertex, then it does not depend on any of the momenta. Its contribution is collected
in B3(ω). Terms depending on one momentum only are collected in B2(p1, ω1), these are
the graphs in which one of the external lines ends in a boundary vertex. The contribution
of a diagram starting with bulk vertices on both ends depends both on p1 and p2. Such
contributions are collected in B1(p1, p2, ω1). Summing up all these terms we have (13).
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